
THEMIS: A Fair Evaluation Platform for Computer Vision Competitions ∗

Zinuo Cai1† , Jianyong Yuan1† , Yang Hua2 , Tao Song1 , Hao Wang3 , Zhengui Xue1 , Ningxin
Hu4 , Jonathan Ding4 , Ruhui Ma1 , Mohammad Reza Haghighat4 , Haibing Guan1

1Shanghai Jiao Tong University
2Queen’s University Belfast
3Louisiana State University

4Intel
{kingczn1314, sjtu2017yjy, songt333, zhenguixue, ruhuima, hbguan}@sjtu.edu.cn, Y.Hua@qub.ac.uk,

haowang@lsu.edu, {ningxin.hu, jonathan.ding, mohammad.r.haghighat}@intel.com

Abstract
It has become increasingly thorny for computer vi-
sion competitions to preserve fairness when partic-
ipants intentionally fine-tune their models against
the test datasets to improve their performance. To
mitigate such unfairness, competition organizers
restrict the training and evaluation process of par-
ticipants’ models. However, such restrictions intro-
duce massive computation overheads for organiz-
ers and potential intellectual property leakage for
participants. Thus, we propose THEMIS, a frame-
work that trains a noise generator jointly with orga-
nizers and participants to prevent intentional fine-
tuning by protecting test datasets from surreptitious
manual labeling. Specifically, with the carefully
designed noise generator, THEMIS adds noise to
perturb test sets without twisting the performance
ranking of participants’ models. We evaluate the
validity of THEMIS with a wide spectrum of real-
world models and datasets. Our experimental re-
sults show that THEMIS effectively enforces com-
petition fairness by precluding manual labeling of
test sets and preserving the performance ranking of
participants’ models.

1 Introduction
The rapid advancement of machine learning in academia
and industry has sprung numerous online competitions, es-
pecially in the computer vision area. Large-scale competi-
tions have motivated researchers to push forward the perfor-
mance of machine learning algorithms continuously. Many
key algorithms are firstly proposed at competitions, such as
AlexNet [Krizhevsky et al., 2012], GoogleNet [Szegedy et
al., 2015], and ResNet [He et al., 2016] appeared in ImageNet
Large-Scale Visual Recognition Challenge (ILSVRC) [Rus-
sakovsky et al., 2015]. The substantial amount of rewards
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attracts global talents to design machine learning models for
particular problems and chase the championship. However,
some dishonest participants intentionally fine-tune their mod-
els with the hand-labeled test sets to achieve a higher testing
accuracy in the leaderboard, which violates the competition
ethics and ruins the healthy competition ecosystem. There-
fore, it is imperative for competition platforms to evaluate
participants’ models with fairness preserved.

We classify the mainstream platforms of computer vision
competitions into three categories in Figure 1: Platform A,
B, and C. The major difference between the three platforms
lies in the way that they distribute the test data and labels. In
Platform A, the organizer of competitions releases test data
and labels without any further maintenance. It relieves the
burden of both the organizer and participants, but releasing
test labels allows participants to fine-tune their models with
the test set. Platform A is more prevalent in machine learning
communities rather than competitions, such as the handwrit-
ten digit recognition task on MNIST [LeCun et al., 1998b].
In Platform B, the organizer only releases test data and keeps
test labels private to avoid the above situation. Participants
are required to submit their predictions to the platform for
evaluation. However, Platform B can hardly prevent artificial
tagging of test data, resulting in potential unfairness for hon-
est participants. Kaggle1 is the most famous machine learn-
ing competition platform falling into the Platform B category.
A few similar vision competition platforms include ILSVRC,
PASCAL VOC [Everingham et al., 2010], MOT Challenge
[Leal-Taixé et al., 2015], and DAVIS Challenge on Video
Object Segmentation [Perazzi et al., 2016]. In Platform C,
the organizer releases neither test data nor test labels. Par-
ticipants are required to upload machine learning models or
source code for evaluation. Thus, Platform C can success-
fully prohibit artificial tagging, but due to the heavy main-
tenance and configuration cost of model evaluation environ-
ments, Platform C only fits for small-scale competitions with
a limited number of participants, such as CodaLab2, the Vi-
sual Object Tracking (VOT) Challenge [Kristan et al., 2016].
Besides, participants are usually reluctant to give up their in-
tellectual property when uploading their models.

1https://www.kaggle.com/
2https://competitions.codalab.org/

https://www.kaggle.com/
https://competitions.codalab.org/
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Figure 1: Comparison between current mainstream frameworks and THEMIS. Platform A releases both test data and test labels to participants
and participants only report their final results to the platform. Platform B only releases test data and it compares the results uploaded by
participants with ground-truth labels. Platform C does not release either test data or labels. Our platform, THEMIS, releases noisy test data
and compares participants’ predictions with test labels. Best viewed in color.

In this paper, we design THEMIS, a novel competition plat-
form that prevents participants from fine-tuning their models
with test sets and does not collect participants’ models, which
combines the advantages of the three platforms and avoids
their drawbacks. Unlike Platform B, THEMIS prevents partic-
ipants from hand-labeling the test set by releasing noisy test
data to participants. The noise is generated from a series of
independent Gaussian distributions with parameters trained
by the organizer and participants collaboratively. Besides,
THEMIS is much more scalable and trusted than Platform C
because the organizer is free of maintaining a model eval-
uation environment, and participants can keep their models
private. By comparing the participants’ predictions over the
noisy test data with the ground-truth test labels, THEMIS can
estimate performance ranking of the participants’ models.

We evaluate the effectiveness of THEMIS on popular mod-
els including LeNet [Lecun et al., 1998a], ResNet [He et
al., 2016] and VGG [Simonyan and Zisserman, 2014] etc.,
and public datasets including UTKFace [Zhang et al., 2017],
CIFAR-10 [Krizhevsky, 2012], and CIFAR-100 [Krizhevsky,
2012]. Our extensive experiments demonstrate that THEMIS
effectively guarantees the competition fairness by disturb-
ing test data with random noise and precisely preserves the
performance rankings of participants’ models predicting the
noisy test data, compared to their performance on plain test
data with no noise added.

Our main contributions are as follows:

• To promote fairness in computer vision competitions,
we propose a new evaluation platform, THEMIS, to avert
participants from fine-tuning their models on test sets.

• We design a noise generator to protect test sets, derive
constraints on its parameters theoretically, and prove its
feasibility to ensure fairness with extensive experiments.

• Our experiments on public datasets, including UTK-
Face, CIFAR-10, and CIFAR-100, demonstrate that
THEMIS can guarantee competition fairness by protect-
ing the test set from human visual recognition and with-
standing dishonest participants.

2 Related Work
Existing Evaluation Platforms. A few platforms host com-
puter vision competitions. Kaggle is one of the most popular
platforms based on Platform B. It promotes fairness by only
revealing the accuracy of participants’ models on partial test
set before the competition deadline. Platforms based on Plat-
form C—such as CodaLab—require participants to submit
their source code. Few studies have focused on enhancing the
fairness of competition platforms, and we only find that Blum
and Hardt designed “The Ladder” [Blum and Hardt, 2015]—
a reliable leaderboard for machine learning competitions—
to solve the problem of overfitting and make competitions’
leaderboards more reliable.
Methods to Protect Datasets. However, “The Ladder” still
ignores the situation where participants may manually label
the test set. Unlike “The Ladder”, THEMIS focuses on how
to process test sets to protect them from being hand-labeled.
There are mainly two types of methods to protect datasets:
cryptographic approaches and perturbation approaches [Al-
Rubaie and Chang, 2019].

(1) Cryptographic Approaches. Homomorphic Encryp-
tion (HE) [Gentry, 2009] is one of the most prevalent en-
cryption forms. Feasible homomorphic encryption schemes
such as Leveled Homomorphic Encryption [Brakerski et al.,
2012] can support both addition and multiplication. Dowlin
et al. proposed a method to convert learned neural networks
to CryptoNets [Dowlin et al., 2016] for encrypted data, while
Hesamifard et al. extended the framework to deep neural net-
works in [Hesamifard et al., 2017]. They also proposed to
approximate nonlinear functions, e.g., sigmoid, ReLU [Nair
and Hinton, 2010] with polynomials. Phong et al. built a deep
learning system via additively HE to prevent privacy leak-
age to an honest-but-curious server in [Phong et al., 2018].
Although HE’s features are attractive for privacy-preserving,
it requires adjusting the architectures of participants’ models
between training and inference, which introduces extra work-
loads for participants.

(2) Perturbation Approaches. Differential Privacy (DP)
[Dwork, 2006]—as a typical perturbation approach—has
been widely applied to enhance the dataset privacy in ma-
chine learning. Papernot et al. proposed Private Aggrega-
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Figure 2: The workflow of THEMIS. The workflow is split into three stages: local training, collaborative training, and evaluation. Participants
firstly train their models on the training set in the first stage. In the second stage, they jointly train a noise generator with the organizer.
Finally, they submit the results of their models on the noisy test data, based on which the organizer announce their rankings after comparing
their predictions with test labels. Best viewed in color.

tion of Teacher Ensembles (PATE) [Papernot et al., 2016] to
protect private information via noise voting among models.
[Abadi et al., 2016] achieved the same goal within the frame-
work of DP. However, differential privacy is commonly uti-
lized in the training stage rather than in the inference stage
because it leads to accuracy degradation. Recently, some re-
search has shifted attention to the inference stage: Wang et
al. introduced random noise addition to their framework, AR-
DEN [Wang et al., 2018], contributing to privacy protection
and performance improvements simultaneously; Mireshghal-
lah et al. proposed Cloak [Mireshghallah et al., 2020], dis-
tinguishing pertinent features from uncorrelated features for
specific tasks in the meantime of training a noise genera-
tor. Our framework, THEMIS, based on Cloak, enhances the
privacy preservation of test sets and prevents human visual
recognition.

3 The Design of THEMIS

3.1 Workflow
To overcome those drawbacks exposed by current platforms
of computer vision competitions, we design THEMIS to pro-
mote the fairness of computer vision competitions. Figure
2 presents the workflow of THEMIS, including three stages:
local training, collaborative training, and evaluation.

In the local training stage, the competition organizer re-
leases the training set, including plain training data and labels.
The participants download the training set, create models, and
train their models on it. In the collaborative training stage, the
organizer first initializes a noise generator and then invites
all participants to jointly train the noise generator for several
epochs. An epoch of the collaborative training process has the
following steps: 1) The noise generator generates noise and
adds it to the training set; 2) It sends the noisy training set
to participants, and then participants feed the noisy training
set to their models and compute the noise generator’s gradi-
ents; 3) Participants send back the gradients to the organizer
to update the noise generator’s parameters. In the evaluation
stage, the organizer uses the trained noise generator to add
noise to the test data, and then release the noisy test data to

participants. Participants are required to submit the predic-
tions of their models on the noisy test data. After comparing
the participants’ results with the ground-truth test labels, the
organizer estimates participants’ scores and rankings.

3.2 The Noise Generator
The noise generator is the critical part of our framework. It
is adopted to generate noise to perturb test data and prevent
participants from identifying the raw test data and labeling
them manually. With more noise added to the test data, the
accuracies of participants’ models will inevitably decrease.
However, we can keep the rankings of participants’ models
unchanged by adding some constraints to the noise genera-
tor’s parameters. Particularly, by training the noise generator
with some participants’ models collaboratively, we can re-
cover the accuracy of most models and relax the constraints
of the noise generator’s parameters, which means we can in-
crease the noise scale to further protect the test data.

The design of our noise generator follows that in Cloak
[Mireshghallah et al., 2020]. It retains a series of µ and σ,
which respectively represent the mean and variance of a se-
ries of independent Gaussian distributions. The number of
Gaussian distributions is equal to the size of the input data.
For instance, if the size of input images is 3 × 32 × 32, the
noise generator will have 3072 independent Gaussian distri-
butions. The scale of σ represents the amount of noise we
add, and thus describes the protection level of test data. That
means the larger the scale of σ is, the higher level of protec-
tion for test data we provide.

3.3 Constraints for Rank Preservation
As a competition platform, it is fundamental to ensure fair-
ness for all the participants. Specifically, the ranking of par-
ticipants’ models must keep consistent after applying noise to
the test data. We apply mathematical analysis to explore the
relationship between noise and accuracy degradation.

For a computer vision problem, we consider that the distri-
bution of the dataset follows a normal distribution with mean
µx and variance σ2

x. We make this assumption since nor-
malizing input data with a normal distribution is a widely-



applied data preprocessing method in computer vision. For a
user model m that is trained on the dataset X ∼ N(µx, σ

2
x),

we consider that it is trying to find a distribution X̃ ∼
N(µm, σ

2
m) to fit the distribution of the datasetX . Under this

premise, the model’s accuracy α is correlated to the similarity
ofX and X̃ , and we use Kullback-Leibler Divergence [Joyce,
2011] to quantify the similarity of two Gaussian distributions.
In our framework, the noise distribution follows N(µn, σ

2
n).

So after adding noise to the input data, the new distribution
of the noisy input data is X ′ ∼ N(µx + µn, σ

2
x + σ2

n).
For any two user models m1 and m2, suppose that αm1 >
αm2

. Targeted to preserve the rankings of distinct models re-
gardless of model structures, we need to solve the Inequation
α′m1

> α′m2
. We simplify the inequation and finally get

σ2
n

2µn
≤ µx − µm ≤ upperbound. (1)

The detailed deduction and our further experiments that
verify the deduction are demonstrated in the supplementary
materials.

3.4 Training the Noise Generator
We discover that collaboratively training the noise generator
with a variety of models not only improves model accuracies
on the noisy test data, but also broadens Eq. (1) for rank-
ing preservation and enhance fairness. That’s why we de-
sign the second stage—collaborative training stage—in our
framework, in which all the participants are required to train
the noise generator with the organizer using the loss function
defined as:

L = − log
1

n

n∑
i=0

σ2
i+

λ

F∑
fi∼F

Er∼N (µ,σ2),x∼D

[
−

K∑
k=1

yk log (fi(x+ r))k

]
, (2)

where the first term tempts to increase the scale of noise to
further protect test data, while the second term optimizes the
accuracies of all participants’ models F and improves rank-
ing preservation. λ is a hyperparameter that keeps a balance
between these two terms. Algorithm 1 shows the detailed
process of the collaborative training stage. Here F denotes a
set of participants’ models and we use another parameter ρ to
replace σ to restrict the scale of σ to the upper bound M .

4 Evaluation
4.1 Experiment Settings
Datasets and Tasks. We select three datasets to evaluate
our framework: the UTKFace dataset, the CIFAR-10 and
CIFAR-100 datasets. On the UTKFace dataset, we carry out a
gender-classification task, and on the CIFAR-10 and CIFAR-
100 datasets, we conduct 10-class and 100-class classifica-
tion, respectively. In all experiments, we split them into three
parts—training sets, validation sets, and test sets—with the
ration 4:1:1. Training sets and validation sets are available
for both the organizer and participants throughout the contest,

Algorithm 1 Training the noise generator

Require: Dtrain, ytrain, F , total iteration
1: Initialize µ, ρ, iteration = 0
2: repeat
3: Select training batch x from Dtrain

4: Sample e ∼ N(0, 1)

5: Let σ = 1+tanh(ρ)
2 ×M

6: Let r = σ · e+ µ
7: Let X = x+ r
8: Compute loss from Eq. (2)
9: Gradient descend on µ, ρ from loss.

10: Let iteration = iteration+ 1
11: until iteration == total iteration
12: return µ, ρ

while test sets are not accessible until the organizer and par-
ticipants collaboratively train the noise generator. Besides,
the organizer only releases the noisy test set processed by
noise generators.
Models. We evaluate THEMIS in real-world production sce-
narios by training various numbers of models for each com-
petition task. The number of models varies according to
the difficulty of the task. For the gender-classification task,
there are three models participating in the training, including
LeNet [Lecun et al., 1998a], ResNet [He et al., 2016] and
VGG [Simonyan and Zisserman, 2014]. For CIFAR-10 clas-
sification, we introduce AlexNet [Krizhevsky et al., 2012],
DenseNet [Huang et al., 2017], GoogleNet [Szegedy et al.,
2015], and other models into our framework. For the classifi-
cation task on CIFAR-100, we do not only adopt different ar-
chitectures of models but also models of different complexity
for the same architecture. For instance, in terms of ResNet,
we adopt ResNet-20, ResNet-32, and ResNet-56.
Implementation Details. For simplicity, we simulate the
second stage instead of implementing end-to-end interactions
between the organizer and participants. For one task, we
first train several models on the training set. And then, we
feed the noisy training sets to those models and only up-
date the noise generator’s parameters. The time to update
the noise generator is related to the number of models and
their complexity. Finally, we evaluate the models’ perfor-
mance on the noisy test sets. We implement the code in Py-
Torch and run the experiment on an NVIDIA virtual machine
with 4 Tesla K80 GPU cores. THEMIS is open-sourced at
https://github.com/AISIGSJTU/Themis.

4.2 THEMIS’s Effectiveness
Figure 3 demonstrates the effects of noise generators on three
datasets. For each group, the original images are on the left
while the noisy images are on the right. The first row de-
scribes how THEMIS works on the UTKFace dataset. It is
impressive that ResNet-56 and VGG16 can respectively have
an accuracy of 82.92% and 83.01% with noise added while
it is challenging enough for humans to gain a high accuracy
for the gender classification. For more complex tasks like
10-category classification on the CIFAR-10 dataset, some vi-
sual information still left in the noisy test set to keep rankings

https://github.com/AISIGSJTU/Themis


Task Model Plain Test Sets Untrained Noisy Sets Trained Noisy Sets
Accuracy Rank Accuracy ∆rank Accuracy ∆rank

Gender Classification
LeNet 88.57% 3 64.46% +1 82.75% 0

ResNet-56 89.31% 2 65.01% +1 82.91% 0
VGG16 90.70% 1 57.06% -2 83.06% 0

CIFAR-10 Classification

AlexNet 71.68% 9 65.38% +8 70.24% 0
DenseNet-121 91.45% 1 22.04% -7 86.38% -1

GoogleNet 91.43% 2 16.35% -8 87.02% +1
LeNet 68.28% 10 44.40% +8 67.67% 0

PreResNet-20 78.81% 8 27.14% +4 75.24% 0
PreResNet-56 80.18% 7 25.35% +1 76.53% 0

ResNet-20 82.83% 6 21.27% -3 78.96% 0
ResNet-56 83.70% 5 25.86% 0 80.60% +1

VGG11 86.19% 4 27.72% +1 80.58% -1
VGG16 88.20% 3 24.53% -4 84.07% 0

Table 1: Accuracy comparison of models evaluated with different test sets. The differences between plain test sets, untrained noisy sets, and
trained noisy sets are whether the test sets are disturbed by noisy generators, or their generators are collaboratively trained. Compared with
the untrained noisy generator, the noise generator after training can alleviate accuracy degradation and simultaneously make the rankings of
models have minute fluctuations.

        Original Images                      After processed by Themis

Figure 3: Effects of noise generators on the three datasets. For each
group, the original images are on the left while the images disturbed
by the noise generator are on the right. The effect of noise on the
UTKFace dataset is more significant than that on the CIFAR-10 and
CIFAR-100 datasets. Best viewed in color.

consistent. However, we have a test with human annotator,
which also shows THEMIS’s effectiveness in protecting test
sets. More details can be found in the supplementary materi-
als.

To show the significance of training the noise generator and
its effects on recovering accuracies of different participants’
models, we display the relationship between the accuracies of
the models on the noisy validation sets and training epochs of
the noise generator during the CIFAR-10 classification task
in Figure 4. At the beginning, there are two explicit problems
with the noise generator, resulting in that we cannot utilize
the noise generator without training in our framework. One
is that the accuracy of different models deteriorates so dra-
matically that it cannot reflect their actual performance on
the test sets. The other one is that it cannot be guaranteed
that the rankings between models remain unchanged. We can
conclude from Figure 4 that models with deeper architectures
usually suffer more than those lightweight models. With the
training going on, the models gradually recover their capabil-
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Figure 4: Model accuracy on validation sets v.s. noise training
epoch. Ten models participate in the training of the noise genera-
tor on the CIFAR-10 dataset. In the beginning, all models have a
dramatical degradation in performance but they gradually recover
their performances as the training goes on.
ity on the validation sets. We adopt validation sets instead of
test sets to evaluate models’ capacity when training the noise
generator since test sets are not accessible until evaluation.

4.3 THEMIS’s Fairness
Serving as a novel platform for computer vision competitions
that aims at protecting the test data and improving the com-
petition atmosphere, we can not ignore the intrinsic fairness
of the competition. It means that suppose every participant
trains his models without the trick of fine-tuning directly on
the test data, the rankings of different models should reflect
where they really are, just like other platforms.

To verify our framework’s fairness, we simulate three clas-
sification competitions. For the gender classification and the
10-category classification, we display details and results of
models and their performance in Table 1. In the left columns,
we first list the results of different models’ performance on
the test sets without noise, similar to other platforms. The
middle columns show the results on the test with random
noise. The initial parameters of random noise are the same
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Figure 5: Accuracy on the plain CIFAR-100 dataset v.s. on the
noisy CIFAR-100 dataset. The X-axis represents the accuracy of
the model on the plain test set while the Y-axis on the noisy test set.
There is an approximately linear correlation between the X-axis and
Y-axis variables.

Model Name Original
Rankings Case 0 Case 1 Case 2

AlexNet 9 9 9 9
DenseNet-121 1 2 2 2

GoogleNet 2 1 1 1
LeNet 10 10 10 10

PreResNet-20 8 8 8 8
PreResNet-56 7 7 7 7

ResNet-20 6 6 6 6
ResNet-56 5 4 4 4

VGG11 4 5 5 5
VGG16 3 3 3 3

Table 2: THEMIS’s guarantee of fairness with unexpected situations.
In Case 0, participants’ models update the noise generator in their
names’ alphabetical order, while they update the noise generator in
the reverse order in Case 1. In Case 2, we train the noise genera-
tor 20 epochs, but two models randomly drop out of each epoch’s
collaborative training.

as our framework for the same task, but there is no further
training with the noise generator. The right columns display
our framework’s final results. For the UTKFace dataset, al-
though the discrimination regarding accuracy on the test set
is minute, the ranking of the models does not change after
applying noise. For the CIFAR-10 dataset, we assume that
ten participants take part in the contest. On the plain test
sets, DenseNet-121 and GoogleNet win the first and second
place respectively, while on the test sets with trained noise,
the opposite is true. Although their rankings have a trivial
variation, it can be tolerated since no matter on the plain or
noisy test sets, the difference between these two models in
terms of accuracy is below 0.1%. For the CIFAR-100 dataset,
we adopt twenty models to train the noise generator and de-
scribe the relationship between each model’s accuracy on the
plain and noisy test sets in Figure 5. The overall trend re-
flected in the figure is that there is a linear relationship be-
tween the accuracy values for different models, which is up
to the requirements of our framework. Despite there may be
minor changes among rankings, such changes usually occur
between two models with similar rankings. We reveal the de-

tails of the models and their performance on the CIFAR-100
dataset in the supplementary materials.

4.4 THEMIS’s Robustness
Besides effectiveness and fairness, robustness is also crucial
for a computer vision competition platform. THEMIS’s ro-
bustness refers to that it can handle unexpected situations.
Specifically, we consider whether the following two scenar-
ios influence the final rankings: (1) the joining order of the
participants’ models is different; (2) some participants miss
some epochs of the collaborative training. We experiment on
the CIFAR-10 dataset with ten models listed in Table 1. Our
results in Table 2 show that THEMIS can handle these two
scenarios without hurt to fairness. We only show the models’
rankings in Table 2 because of limited space.

In the first scenario, THEMIS’s fairness is unrelated to the
training order in which participants’ models join the collab-
orative training stage. We verify it by changing the training
order and evaluate participants’ models with noisy test data
perturbed by the new noise generator. Case 0 and Case 1 in
Table 2 demonstrates two different training orders. In Case 0,
participants’ models update the noise generator in alphabeti-
cal order of their names, i.e., AlexNet is the first to update the
noise generator while VGG16 is the last. Although the order
of Case 1 is contrary to that of Case 0, the rankings of models
remain unchanged. We also try more random orders, and the
results remain the same. More different cases and details are
in the supplementary materials.

The second scenario demonstrates that when participants
miss some epochs in the collaborative training, there will
be little influence on the final evaluation results. In the
ideal workflow displayed in §3.1, all the participants’ mod-
els should join the second stage. However, some participants
may miss some epochs by accident or on purpose. Case 2 in
Table 2 simulates this scenario, where two of the ten mod-
els randomly drop out of the collaborative training in each
training epoch. In the evaluation stage, we evaluate all the
models’ performance and compare it with the normal situa-
tion. We can conclude that THEMIS can ensure fairness even
when models miss some training epochs in the second stage.

5 Conclusion
Fine-tuning models with test sets to get higher accuracy is
demoralizing participants and debasing the significance of
competition platforms that promotes machine learning de-
velopment. Yet, there is no effective strategies to preclude
such unfair practices in current platforms. Therefore, we
propose THEMIS, a new evaluation platform that fills this
gap and guarantee the fairness in computer vision competi-
tions. THEMIS prevent participants from fine-tuning models
by adding noise to test data with a noise generator collab-
oratively trained across participants and the organizer. We
implement THEMIS and evaluate its effectiveness, fairness,
and robustness with theoretical analysis and real-world ex-
periments. Our experiments show that THEMIS effectively
prevents model fine-tuning on test sets and preserves fairness
in a wide spectrum of computer vision tasks. In our future
study, we plan to extend THEMIS to support domains such as
natural language processing.
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